A DISJUNCT POPULATION OF RUCALYPTUS GLOBLILUS SSP. BICOSTATA FROM SOUTH AUSTRALIA

by R. E. Valllancolrt ${ }^{*}$ D. B. Boomsmat \& D. Nicym. ${ }^{\text {F }}$

Abstract

 achieve this aim we used RAPD molecular marker analysis of a large $(10 \mathrm{~m} \mathrm{dam}$ lighotuberons stand of E. atobudus sp. bicostatu that rougbly formed a rime The RAPU amalysis indicated no differenees between stomplen laken from the lignombernes stand, ahthngh individak from outside is were all difforent from it aind frons ithe amother: Beeause the lignotuberous stand of E shobulus stp. blowstath is likely to wiginate from a single individual and is very large, it is likety to be very ofd (posothly us ahd is 4000 yeamis) ond the would imply that the poputation was hot esmblished by pastoratise: How did tbe E, blobutus ssp, böcustatu become estithlished humams betore the atrival of pastoralists. long distance pollen dixpersal ated cisnocction th the Vietorian leculypus stalmine sxp. bicravam lisest in the psast.

biummary

Kil) Wonns: Lignotuher, ctone size, RAPD, finesmpintions.

Iniroduction

A population of Euculyphus globulus ssp. bicosvala (Mladen, Blakely \& J. Simm.) Kirkpatr was recenrly diseovered at Mr Bryan SA (33' 26^{\prime} S. $138^{\prime} 57^{\prime}$ E) by B. Bates. This population is onustal in that it is more than 600 km from the neatest known E. globulus ssp. bicostala population (Orway Ranges. Victoria) and is the only population of that spectes west of the Murray-Datlige dranage system. The popsulation is sitwated on the slopes of 31 high ridge south-west of the summol of $\mathrm{M} /$ Bryan, at an allif(ode between 680 and 890 m . The entire population eomatses of approximately 80 apparently very old, large individuals and between 160 and 180 "sapligg slage" individuals with a stem diameter of fess than 300 mon just above ground level. Small seedlings at the cotyledon on the fith leal-pair stage wore wherved it the site in $1996 / 97$ but secdlings wate not observed in Auguse 2000. They may have been removed by sheop. The population has a range of approximately 1000 Mf and forms threc sub. populations separated by e. 200 m each, the western subpopulation being the largest. Supling stange

[^0]individuals were more plontilul in. although not restrieted to, the relatively lower elevations within the poputation. The E. globulss sxp. biecostata trees ranged in heighe fiom less than 5 lo 18 m . The understorey was donimated by mative grasses and herbs. althongh some d/ocaswarina verticillata (Lum.) L. Johnson aod Bursaria shimesa Cas. occutred within the population Six plant species acturring at the site are classificed as rase or endangered. namely, Asplentum thabellifelitom (is). Derwenta decomse (F Muell, B. \& Briggs \& Ebrend., Hymenanthera dentata R. Br, ex DC. Lepidiram psender-tasmanicum Thell. Qleavia pamesse Hook. ssp. pantrosa, and Rhodanthe anthomoides (Sprengel) Panl C. Wilson (P J Lang, pers. $\mathbf{c o m m}$. 2000) Nowther cacealyptsoceared with Eucalyptus globulus ssp, bicos/ufa, Further down MI Bryan the sisp. bicostata population is grassland down to modway th the south-western slope. Below this grassland is open E. ketussylom F. Muell. IE. peresar E. Muell. ex Miq. /A. ivricillara woodland. The local area is one of the coldest in South Australia, with the mearest lemperature-rocording weather station at Yongata recording average winter minima of $2.5^{\circ} \mathrm{C}$ and an extreme (July) minimum of minus $8.2^{\circ} \mathrm{C}$, the lowest in SA (Buteath of Metcorology; htp://www.BoM.GOV.AL/elimate/).

In eucalypts. vegetative propagation oceurs through lignotubers. A lignotuher is at semisuhteranean woody mass of stem-like-lissue that gives protection to a kage reserve of epicormic budk. These allow rapid regencration after stem desifuction or damage by lire or other sauses (Jacobs 1955:

Chattavery 1958). Lignotubers oecur in the majority st Sucalyphas (L'Hertl.) specteg at soloe stage if their life eycle (Jacnobs 1955). Repeated damage (0) at tree can fowhl it extensive lignotuher development and formation of it inulti-stemmed stand (Lasey \& Johoston 1900), Encalypts capable of vegetative
 I'Jyolr et af. 1998)
The ghastion has been arsed ats to whethel this Soath Australiat population of E. ghomens sspl lanostala is aaturat or whelher it might have beed planted after the arrival of pastoralitits is the areat. A large stand at E. stostolus ssp. bienstates that roughly formed at rings shage was liound at the site at dbout 850 in attilude it the western sum-pepulation. This shand is very lafec, being 10) mo in draneter and polembially sould have arisen Irmom lignotuberous groweth. Other lignosuberous-srands of a similat size and possibly evon larger bec atso present the the site. bur are more diflicult to jdentily because of lignofuhor fragmentation and mया-cimoular devetopment of the stamd
Molectlar markers are essential in identrymes individual genolypes and studyigg vegerative propagation hecause the elonal matore of some vegeration cannost be established with eanfidenee by morpholegical aseesment atone. Random Amplified Polymorphic DNA /RAPD) (Willisos ef al. 1990: Welsh \& Modleltand r99()) is a uselal lype of molecular nuakel for the study of generic variation since nometous foci can be sumplod. RAPLD antlysis Ias been used extensively in elfalypth, in detecting differences hetween ctosely related species athd hybrids (Sile el atl. 1976; Rossetto at al. 1997), it shdics of genelic diversity and population sonusture (Nesbitt ef al 1995; Skabo et al 1998). in lingerprinting studien (Kei) \& Griffio 1994: Neshill of ut. 1997: Vaillanesurl α S Skabo 1499), in Studies of brecdine systems (Gaiotho ed al. 1097) amd in stulach of vegetative propagation by lignotuher (kenningon at al. 1990; 'Tyson al ail. 1998: Russette al al. 19921. The sion of this sludy was to deremine whether the larec lignobherous E. ghoblus ssp. bicorsata stand He conal. If if is, then its large size would mpply that
 have buen patablished by pastoralisits.

Ataterials and Methods

Matare sdof leaf material from eigh Ethedypurs gholutur ssp. bicostutu samples was weighed and frozen in liquisl nitrogen prior to use. Four of thesesamplen were from the possible clone and four wher samples came from trees oway fism the lignotuberous stand. The four samples from the possible elone came from the four cardimal points of the Ignotaber Total genomic DNA was isolated
from 2.0 of of leal material weod ding to the GTAB method of Doyle \& Doyle (1990).

The DNA from each tree wher issoved for Rendom Amplified Polymorphe DNA (RAP'O) imatkers (Welsh \& McClelland 1490: Williums ov at. 1490), Ansplification condifions were is in Neateme at al. (1907). Peimers were ohtained from Operne Technologies Doc: (TOOOO Allantic Axc., Alameda EA 94501 USA) amd the University of British Colanibla (6174 Univensty Boulevaral. Vaneouver. B.C. VfiT 173). TWemp.fout primers previnusly showh to prondece polyomomphic bands (Vailancourl oy Skabu (999) wers used; OPA-02, OPA-14. 9PA-15, OPA17. OPA $=20$. SPP 515 , 5IPC-19, OPD-055, OPDE-07, Oリ튠. UBC 30, IJBC 210, UBC 215. UBC 217. UBC 218, UBC 232, UBC ユ34, UBC 237, $\angle B C 213$. UBC 240, 1 IBC 266 and UBC 200, Amptifed iragments were efecirnphotelicalty separated in it
 phototraphed after staining wift ethidium bromide: Consistency of interpretation wats established by repeating floce samples wifl each primes. In general bands were not seored if they were faint or dilliuse. or necured in the extremes of the amplitied stre range. Only hands that were present in 25% (0) 75% of the samples were used in the analysis, as reposted in Skubo et al. 1998.

The prosence/absence of RAPD hands was used to calculate a similarity matrix of smple matching
 NTSYS program (Rohlf 1903). The simple Inatching cocificient (SM) is detmed ats the total nomber of matelies (shared absenee or presence) hetween two individuals, divides by the tetat number of bands senteal. The bame program was then used lo calarlate the elusterite al trees with the UPGMA ngestrithm and it dendrogeran showing the relatedness of dle samples was produced

Results and Diseussion

Fuecy eight polymombic hands that mel wor selecton efteria were sared for the eight DNA samples. Simples 1-4 from the possible lignotuberous staind were jdentical with a similarity of 1.0 (Table 1), Samples 5-8 were ath difterent from one ancilier and from samples of the lignotationous stand (Fig. 1). The free mose elosely retated bo fle lignotuberous stand, free 5 , joined the ligmolubermes stand sarmples al at Jevel ($\mathrm{SM}=0.58$) dat shows that if is not chosely related ios it. Nestint er al. (1997) foond that RAPD variation within clones wath trivial conpared lo the valiation foond ceven between fallsthlings and that sanilarity decreased with pedigne distance. The lack ol any variation belween samples From the ligmotuherosts shand and the mueth lower degrec of similaraty with the nob ol the samples. nver

TABLE 1. Smple man himg coeffictent (SM) measure of smilarty between samples from a Eucalyptus globulus ssp. bicostata papulation al MI Brvom in South Shasralia ciallulated with RAP'D markers.

Sanpte number (no.)								
no.	1	2	3	4	5	¢	7.	8
1	1.100							
2	1.00	1.001						
3	1.001	$1.00)$	$1.10)$					
4	1,00	1.00	1.00	$1.00)$				
5	(1).61	(1).59	0.57	11.57	1.00			
(s)	0.34	12.35	0.34	0.34	1117	100		
7	1). 43	0.43	0.43	0.43	0.40	0.40	1.60	
8	0,32	0.33	0.34	0.7 .4	0.38	0.49	. 0,60	1.00

Samples 1-4 are fiom the 10 m wide lignotuberous stand, while samples $5-8$ are trom individual trees in the vicinity of the stand.

Fig. 1. UPGMA clustering oif samples bom a Eucalywas ghobuhns sp: bicostam populstion all Me Bryinl in Scuth Australia based on a simple matching coelficient (bM) measure of similarity ealeulated with RAPD markers. Sumples 1-4 are from the 10 m wide ligmotuberoussand. while samples $5-8$ are from individual trees in the vicinity of the stand.
a relatively large number of polymorphic bands. is very strong evidence for the clonality of samples I4. Assumine the growth rate of the E. globulus ssp. bicostatu lignotuber was similar to that given by Tyson et al. (1998) for E. risdonii llook. F. and E. amygdulina Labill, of about $2.5 \mathrm{~mm} / \mathrm{year}$, then it would have taken 4000 yens for the E. gholuturs ssp. hieostata lignotuber to achieve its present size. This growith rate was comparahle io that observed in E. olrosa F. Muell, ex Miy by Wellington at al (1979). but greater that that obtained for a two motre diameter lignotuber of E. coccifaru J. D. I Iook (Head \& Latey 1988). We cannot say how old this individual really is. but it is probably much more than 200 years old. This population of $E:$ g ghobulus ssp. bicostata is therelore most likely to be natural and indeed an interesting remnant that deserves
conservalion. Although the stte is being grazed by sheep (which would affect the rare understorey species and the eucalypt regeneration), the thees are long lived and not noticeably affected by grazing. Thus the population is not under any short term risk from the current land practices.

How did the E. globulas ssp. bicostala get established on MI Bryan'? One possibility is that if moved to this site through natural Jong distance seed dispersal. However, this eucalypt taxon, like most eticalypts. Jacks adaptation for long distance seed dispersal (Polls \& Wilahire 1997). A related possibility is that this population was established from seed iransported by aborigines. Another possibility is that it could have moved as ssp, hicostata pollen conning from atar and hybridising with an unknown resident eucalypl species, such as the related E : goniocalys E. Muell. ex Miq. which occurs within 60 km of the site see Ponts \& Reid 1988 For an example of this evolutionary meebanism). This would explain why the chloroplast DNA of this population is of is type very different from that encountered in ohter populatons of E. globulus so lar surveyed (Jackson el (ul. 1999). None of these hypotheses can be disproved. However, perhaps the simplest explanation for the nccurrence of E. globulues ssp. bicostata at Mt Bryan is that the Vietorian E. glubulus ssp. bicostata populations were once connected to Mt Bryan at some time in the past. When this would have occurred is a matter tor speculation. It is inlikely to have been in the last $35.0(0)$ years since the current aridity and the even greater aridity around the glacial maximum make it unlikely that the Murray Basin could have sustaned E. slobulus ssp. bicostatu populations. It has often been assumed that this aridity may have been fairly constant from the Eocenc to mid Miocene martic incursion into the Murray Basin (Marginson \& Ladiges 1988). However, recent evidence from Lake Eyre suggests that there might have been wetter
periods between 50,000 and 35,000 years BP (Magee \& Miller 1998). Therefore, it is possible that during these or other previous wetter periods, an E. glabulus sipp, bicostata forest could have been more or less sontinuous from Victoria to Mt Bryan in South Australia.

Acknowledgments

We are grateful to $\mathrm{B} . \mathrm{M}$. Potts for providing the impetus for this project, some of the information on the site and for helping with the collection of specimens. and S. Skabo for technical assistance.

References

(inntrawas. M. M. (1958) Bud development and lignotuber domation in cucalypls. Aish. I. Bot. 6, 103-115.
Demat: J. J. \& DOMLE, J. L. (1990) Isolation of plant DNA from fresh tissue. Form 12. 13-15.
Gatorime. E. A.. Bramucci. M. \& Graitapaglia. D. (1997) Estimation of outcrossing rate in a breeding population of Eucalyphes urophylla with dominsul RAPD and AFLP markers. Theo. \& Apph. Gen. 95, 842-849.
HEAD. M. J. \& LACEY. C J. (1988) Radiocarhen age determinations from lignotubers. Aust. ./. Bot. 36, 93100.

Iackson, H. Ty., Smbani, D. A.. Potts, B. M. \& VAlit Ancourr, R. E. (1999) Chlomplast DNA evidence for reticulate evolution in Encalyphes (Myrtaceate). Mol. Fan) 8, 739.751 .
Jacobs. M. R. (1955) "Growth Habits of the Eucalyphs" (Government primter, Canberra).
Kenningiton. W. J., Warectit, M. \& Jamiss. S. H. (1996) DNA fingerprinting supports notions of clonatity in a fare mallee Eacolypmas argutifolia. Mo7. Eeol. 5, 093. 696.
L.Acis. C. .1. (1983) Development of large plate like lignoubers in Eucalyptus hotrmides Sm. in retation ig environmental factors. Aast. I, Bot, 31, 105-118. \& JohnsFon, R. D. (1990) Wondy clumps and clumpwords, llid. 38, 299-3.34.
Magif. J. W. \& Milite, G. H. (1998) Lake Eyre palacohydrology from ookia to the present, beach ridges and glacial maximum aridity. Palaooseogr: Palacoctimatrol. Palacoecol. 144, 307-329.
Margingon, d. C. \& Lablgiss, P. Y. (198x) (icographical variation in Eucalypus baxteri s.I and the recognition of a new species, E. urenaced. Auss. Syss Rot. 1. 151-170.
Nesbiti. K. A.. Poits. B. M., Vaillanedurt. R. E.. West. A. K. \& Rean, J. B. (1995) Partitioning and distribution of RAPD variation in a lorest free species, Enculyphes alobulus (Myrtacesie). Hered. 74, 628-637.
\& Rtio. J. B. (1997) Fingerprinting and pedigree analysis in Enculyptus ghobulus using RAPDs. Silvat Genetica 46, 6-11.
Portis, B. M. \& Rem), d. B. (1988) Hybridisation as a dispersal mechanism. Evol. 42, 1245-1255.
\& Wilashire R. J. E. (1997) Eucalypt genelics and genecology pp. 56-91 /n Williams. I. \& Woinarski: J. (Eds) "Eucalypt Ecology: Individuals w Ecosystems" (Cambridge University Press, Cambridge).
Rosseito. M. Lucaroitt, I, Homptr, S, D, \& Dixom, K. W. (1997) DNA fingerprinting of Eucalypras grantiticola - A critically endangered relich species or a rate hybrid. Hered. 79, 310-318,

- Jezierski. G.. Homer, S, D. \& Dixon, K. W. (1999) Conservation genetics and clonality in twa critically endangered eucalypts from the highly endemme south-western Australian flora. Bhim). Comserv. 88. 321331.

RomLs. F. J. (1993) NTSYS-pc. Numerical laxonomy und multivariate analysis system (v1,8) (Depariment of ecology and evolution. State University of New York. Now York).
Soknl., R. R. \& SNisiti, P. H. A. (1963) "Principles of numerieal taxonomy" (Freeman. San Franciseo).
Satie, M. M., Polls. B. M., Wear. A. K. \& Relo, I. B. (1yソ6) Molecular differentiation within and between Emalyptus risdonii. E. amygdatind and their hybrids using RAPD markers. Aust. i. Bot. 44, 559-569.
Skamo, S. Vall ancolit', R. E. \& PotTs, B. M. (1408) Fine-scale genctic structure of Eucalypius glofolus ssp. globulus forest revealed by RAPD5. Wid 46, 583-594.
Trason. M.. Vall Ancolskt. R. E. \& Rtoll, J. B. (1098) Determination of elone size and age in a mallee cucatypt using RAPD4. Ifid 46, 161-172.
Vallinncouri, R. E., Skabo, S. \& Gobe. Pi (1908) Fingerprinting for quality control in breeding and deployment. Aust Fout: 61. 207-210,
Whainciun. A. B., Porach. II. A. \& Nomst, I. R. (1979) Radiocambon dating of lignotubers from matlece forms of Emralyptus. Search 10, 282-283.
Welsh, J \& McClelland. M. (19) 0) Fimgerpinting genomes using PCR with arbitary primers. Nudelef Aclas Res. 18. 7213-7218.
WILIAMS, J. G. K., Kumbik, A. R., LIVAK. K. J., Ralalshi, 1. A. \& TiNciEV S. V. (1990) DNA pelyomephasoms amplilied by arbitary primers are useful is genctic markers. Mid 18, 6531-6535.

[^0]: =School of Plant Sckente and Comperative Reseach Centre fin
 Box 252-55 Tbothan Tax. 70<1
 C-mbil: R. Vathancont of utio collath
 Researdr Centre fir Sustifnable. Pasdection Foresiry Pe lsox 1811 Momen Gambier SA 529 H
 Ambiridit, (iP) Rox 2100 Adelate 5 S 5001 .

